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In  this  paper  the  task  to  extract  significant  built  structure in Digital  Surface  Models is 

analyzed.  The  original  data  are  obtained by means of Interferometric  SAR or LIDAR  techniques, 

and have  different  resolution  and  noise  characteristics. 

This work aims  to  make a comparison of what  (and how precisely)  it is possible to  detect 

and  extract  starting from these  models,  taking  into  account  their  differences,  but  applying to  

them  the  same  planar  approximation  approach. To this  aim,  data over Los  Angeles and Denver 

is considered and  evaluated. 

The  results  shows  that  LIDAR  data  provide a better  shape  characterization of each  building, 

not  only  because of their  higher  resolution.  Indeed, less accurate  results  obtained  starting  from 

radar  data  are  mainly  due  to  shadowingjlayover  effects,  that  can  be  only  partially  corrected by 

means of the  segmentation  procedures. However, better  results  than  those  already  presented in 

literature  could  be  achieved by using the  IFSAR  data  correlation  map. 

I.  INTRODUCTION 

The three-dimensional  structure of a  urban  environment is extremely  complex,  and 

crowded with objects of different nature  and height.  Commercial  buildings,  residential 

areas, green areas  with  trees  and fences,  roads and railroads  passing one over the  other: 

each of these  groups  represents  objects with different  material,  spatial  and  spectral  charac- 

teristics,  variously  interacting  one  with the  others. Anyway, the precise  knowledge of this 

structure is useful not only to identify  all  these  elements of the  urban  landscape,  but also 

to highlight their  interactions  with  the  natural  landscape. Moreover,  towns and  cities  are 

characterized by a  fast changing rate,  and all the  activities  that rely on  a  accurate  charac- 

teristic  detection  (from  urban  planning  to real estate  monitoring,  from  hazard  prevention 

to  insurance) need a method  to  update  urban  data  efficientli a.nd  reliably [ 11. 

This is the reason why there is a growing  interest in developing  sensors and  tools  aimed 

to  the  detection  mainly of all the  man-made 3D landscape  feat,ures.  with  reasonable  costs 

and reduced  working time. And this is also the reason why 3D measurements of urban 

environments  are  moving from accurate  (but long,  expensive  and  largely time-consuming) 

photogrammetric techniques to  other  systems, like interferometric  radar (IFSAR) and 

laser altimeters (LIDAR). As a consequence, even image  analysis  techniques for 3D struc- 

ture  detection, noise  correction,  and  automatic  urban  landscape  reconstruction have  been 
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introduced [2]. [ 3 ] .  

Analysis of the IFSAR terrain elevation data in urban  areas  are  usually  difficult  due  to 

the insufficient spatial  resolution,  multiple  scattering  due  to  the building  geometries, and 

layover  effects. in addition  to  the  intrinsic  IFSAR  system level noise. Therefore,  there is 

still a strong need to  evaluate which kind of information is available  from these  data  and 

to  what  extent  it is possible to  extract  them.  The resolution  problem is being  increasingly 

resolved by the new generation of radar sensors operational in the  near  future:  the goal of 

these  systems is to  provide  a  1-meter level spatial  resolution, which therefore  can  resolve 

many of the  objects  present in an  urban environment [4]. As for the second problem 

(multi-scattering, layover, and  noise), we found very interesting to apply to the original 

remote sensing  images some  suitable machine vision approaches [SI. 

LIDAR data  are increasingly  used for urban  landscape  definition [6], [TI ,  due  to  their 

a.ccuraq.  both in height  and  range  measurements. For instance, several  applications  (from 

tornado  damage  assessment  to power  line  detection) were listed in [8], as well as  a  railroad 

GIS design [9]. LIDAR may  be  carried by light  airplanes or helicopters, and is cheap to 

buy and  operate. It. should  be  noted however that some issues in data accuracy  are  still 

open, especially  with  respect to  data analysis and  filtering,  as  noted in [ll]. More work is 

needed,  among  the  other  problems, for building extraction,  both  to build 3D city  models, 

and to find  Digital  Elevation Models (DEMs) of the  ground, where man-made  features 

must  be  discarded [lo]. 

The aim of this work is to use a simple  yet powerful technique that we developed for the 

analysis of IFS-AR data  to  make a comparison of what we can extract (in a  automatic way’) 

from  data recorded in different  places (the  Santa  Monica  area in Los Angeles and  the  State 

Capitol  area i n  Denver) by means of an high precision C-band SAR and a commercially 

available  laser  altimeter. 

The  paper is organized  as follows: Section IT presents  a brief overview of the use of digital 

surface models for building extraction, Section I11 summarizes the building estraction 

algorithm  that we used,  Section IV shows the  esperimental  results, while in Section 1- 

these  results  are  discussed. Finally,  Section VI concludes the  paper. 
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11. SOX-PHOTOGRAMMETRIC DSM A N D  BUILDING EXTRACTION: A N  O\-ERVIEW 

There is a large  literature referring to  photogrammetric  extraction  techniques for Digi- 

ta,l Surface Models (DSM) in  towns  (see for instance [12]), but  only a few articles  about 

the  same  topic  and LIDAR. A comprehensive  comparison of laser altimetry  and  digital 

photogrammetry,  with a section  dedicated to DSM/DTM (Digital  Terrain  Model)  gener- 

ation can  be  found  in [13]. Moreover, almost  nothing  has been published  about  the  use of 

IFSAR data  to  compute precise DSMs of urban  areas.  Therefore, even if this overview is 

far  from  being  exhaustive of the  topic,  its  idea is to explore  this  area  to  understand  where 

and how more research is needed. 

The high  precision LIDAR data which is  now available  from  commercial  airborne  or 

helicopter-mounted  laser  altimeters allow the use of building extraction  algorithms which 

were originally  developed  for photogrammetric  data.  The  usual  approach  starts  from  ap- 

plying mathematical morphology  filters to  the original LIDAR data  to  extract  the  terrain 

surface (and deny  buildings  and  vegetation), called Digital  Elevation  Model (DEM). After 

subtracting  the DEM from  the original data, the  objects higher than  ground level are 

retrieved by means of a thresholding  procedure  (possibly  hierarchical, like in [14]). Veg- 

etation  and  man-made  features  are  discriminated using a suitable  spatial  filter,  based for 

instance  on reflectance measurements [15] or differential  geometry  concepts 1161. In the 

first  case, the  information  carried by the laser beam is used  not  only to  compute  the dis- 

tance between the  illuminated  surface  and  the  source,  but also to  characterize  its  physical 

properties  (material,  roughness, . . . ). This  additional  information is used to  discriminate 

hebween reasonably  flat  man-made  structures  and highly corrugated,  more  absorbing  trees 

and canopies. Very similar  concepts  apply using differential  geometry properties  to rec- I 

ognize  vegetation: the  extreme variety of the  top  surface of green areas reflects into very 

high spatial  variance  and deep step edges in these  zones.  Therefore. an  investigat,ion  on 

these  quantities allows to easily recognize buildings that  do not possess such  character- 

istics. The work ma?' be  done  either when resampling the  sparse LIDAR measurements 

into  the final image  grid (so called intra-cell  variance) or by considering the variance of 

the normal to  the surface  direction in neighboring cells. Both  methods  provide sufficiently 

accurate  discrimination between man-made  features  and  vegetation, even if the reflectance 
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classification  achieves better  results. 

The det(ectec1 buildings are  then  examined  and usually the best fitting  polyhedral  model 

is chosen by extracting  the roof planes and  their  mutual  spatial  relationships. To this  aim, 

in [17] the height, and size of segments are used to refine parametric  and  prismatic  models, 

while in [20] the  planar surfaces obtained by the previous  steps are  jointly  evaluated,  and 

their  parameters  compared  to find the best way to represent the  structure. However, none 

of these  methods is sufficient to  extract valid Computer Aided Design (CAD) city  models, 

and  the  best  results  are  still based  on semi-automatic  approaches  where  the  operator 

corrects the final results of the previous  algorithms.  More  sophisticated  analyses try  to 

recognize the roof model  from  a set of sparse  (but significant) 3D points  representing the 

top of a building.  This  may be done by applying  photogrammetric  analysis  methods like 

[lS], [19] to  the set of points belonging to  the  boundary  (somehow  ordered)  together  with 

some  interior  points  randomly  -added. 

Open  problems  with  respect  to LIDAR data,  together with better  model  extraction 

procedures,  are  to find the limit of what  it is possible to  extract, in terms of the  target 

dimensions and mat'erial  characteristics,  and which are  the most suitable  algorithms  to 

achieve these  results. 

Radar-derived 3D images are far more difficult to  analyze, not  only  because radar  systems 

are not  able to  extract information  with the  same  spatial  and  vertical  resolutions,  but also 

because  they are affected by different  problems, due  to  the  stronger  interaction of the 

electromagnetic  fields  with  urban  materials in the microwave range  than  at  the  optical 

wavelengths. In particular,  the line-of-sight  masking and  the  multiple reflections  from the 

walls produce  phase  artifacts, giving  raise to  the so called shadowing and layover effects. 

So, the typical  response of a  large  building  as computed from the IFSAR data comprises 

a large  zone in the direction of the sensor,  realizing a  sort of "reverse tail",  that cancels 

the  sharp  edge  characterizing  the original  surface. and also a similarly  large area from the 

other  side of the  object, where  no measurements were possible and so no data is assigned. 

Therefore.  the largest  problem in the  interpretation of these data is  how to  reconstruct 

the original  structure of the surfaces  illuminated by the  radar. In [21], for instance. algo- 

rithms based 011 heuristics  are  applied  to  better  retrieve  the  building  edge,  and  therefore  its 
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correct  footprint. In [ E ] ,  instead,  a  more global approach is introduced,  trying  to  segment 

the  data. while  denoising  them  with a machine-vision  modeI-based approach.  Still, even 

if the DSM resolution is coarser than in the LIDAR  final grid, useful information could 

be  extracted,  and  further work is necessary to refine the height and  footprint  analysis 

methods, as well as to go towards  an  automatic 3D model  definition for each  object. 

111. THE BUILDING  EXTRACTION METHOD 

In this work we focus on the  task  to  extract  information on urban  structures  from 

medium/high  resolution  Digital Surface Models: specifically, we want to  automate  the 

detection of the height  and  shape of the buildings in a given area. To this  aim, we apply 

to  the original data a segmentation  algorithm  to  exploit  both  the  spatial  and  vertical 

resolutions,  while  maintaining at  the  same  time a high robustness to noise. In particular, 

the  criteria  applied  to segment the raw data  are geometric  ones,  involving the principle 

of plane-fitting (i.e. to find the  plane which better  approximates a given surface): in our 

situation  this  approach  corresponds to look for the building roofs and walls. Neglecting 

the  simple  iterative region growing approach, we may start from a different  version of the 

algorithm  outlined in [22], which in turn is a modified version of [23]. 

The  algorithm  starts  from  primitives of segmentation that are the lines of the image,  in 

order  to  save  cpu  time  as much as possible, and  it works by means of five processing  steps. 

1. First, we group  the pixels of each  line  into  segments  according to  the following geo- 

metric  criterion: a line is initially  broken if an  edge is detected  (by  comparison  with 

a step  threshold)  and  resulting  segments are further  subdivided if their  middle  point 

is t,oo far  from  the  actual  data.  This  procedure is iterated.  until it is possible to find a 

breakpoint  or down to  the  smallest segment  length allowed. We will see in the discus- ' 

sion that  it is a good  practice  to set this  length  as small as possible  with  respect to 

the physical  characteristics of the buildings to be extracted  and  the  resolution of the 

image. 

2. The second  step  consists in finding the seeds for the  planar  surfaces  that we want 

to use to  characterize  the  original image.  Differently  from the previous version of 

the  algorithm  presented in [22], each seed is found by looking only for two adjacent 

segments  belonging to two successive scan lines and  with  the  most  similar  direction 
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a.ncl z-axis  intercept. So, similarity  search is based on the following measure 

mzmj + 1 ninj + 1 
S l j  = - + 

d(mP + l)(mS + 1) d(n' + l)(np + 1) 

where 2 = nzir + ni is the generic  segment equation.  One of the reasons for this 

simple  seed choice is just its simplicity; however, the main  reason is that, dealing  with 

complex  buildings, the number of three-segment  seeds that we may  find is definitely 

lower than  the  one of two-segment  seeds.  Therefore, the successive region  growing 

procedure may suffer from  this  problem  and  aggregate  only a small  number of other 

segments  to  the  original seeds. 

3. Indeed.  the second step of the building  segmentation  procedure starts when  all the 

segments  adjacent  to  each seed are  examined: if a  segment is close enough  (again  with 

respect  to  both  its  slope  and  intercept)  to  the  plane which better  approximates  the 

seeds,  it is added to the region. This process is applied to all the seeds and  iterated 

(considering  the new aggregated  regions),  until  no  more  expansion is possible,  and 

(hopefully)  the  image is divided  in  planes. 

4. Since the choice of the threshold used to aggregate  the  segments  to  the  seeds  has a 

large  impact on the final  result  (tighter values leave a large number of unaggregated 

segments, for instance) a further merging step  takes  into  account  separately  the pixels 

left,  trying  to  merge  them  with  the  nearest  plane. Even in this  case  the process is 

iterated  after  recomputing  the  plane  parameters  until no further refinement is possible. 

5 .  Finally, the recovered planes  may be  grouped if they  are  adjacent  and  their  charac- 

teristics  are  similar, i. e. again 

aa' + 1 bb' + 1 cc' + 1 
2 + l ) ( a 1 2  + 1 )  + d m  + J- 

is close to one, {a. b, c }  being the  three  parameters identifying a plane. 

-4s a last  comment. we should note  that  not all the pixels must necessarily  belong to a 

plane,  and  therefore at  the end of the procedure all the points  affected by large noise. or 

regions  where no actually  planar  surface is observable are left ungrouped. 
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Iv. EXPERIMENTAL RESULTS 

The previously  presented algorithm was applied to two different test  sets. The first 

is an  interferometric SAR derived  surface  model with  medium precision (5 m  posting). 

The  data were obtained with the AIRSAR system,  operated by NASA/JPL and  mounted 

on a DCS plane. The  system works at  C-band (5.6689 cm  wavelength)  with a 40 MHz 

pulse  bandwidth,  and  has a nominal  height  accuracy  in  the  order of f 2.5 m.  After  the 

interferometric  processing [24], [as], the  ground  range resolution for the  mid-swath  area is 

about 10 meters,  and  the elevation data  are provided at 5 meter  postings,  geocoded  and 

rectified. 

The LIDAR. DSM was obtained by means of a commercial  laser  altimeter  incorporated 

into  the  sensor  instrumentation package called DATIS (Digital  Airborne  Topographical 

Imaging  System)  and  operated by Eaglescan,  Inc., in Boulder, CO. The  system, in its 

high  resolution  operation  mode, provides a mean  sample  density of 9 to  15 feet (nearly 3 

to 5 meters), a slightly  coarser  resolution than  other commercial packages [ll]. Vertical 

accuracy  meets the requirements of 15  cm  root  mean  square  error. The original data  are 

not placed on a. grid, so that  the re-sampling  procedure was achieved by taking  the  mean 

of all the  samples  inside a given grid  element. The final DSM may have positions  without 

measurements,  and  their value is provided by considering the  mean of neighboring cells. 

Three choices for the final sample  posting were made: 

10 meter, for  comparison  with the resolution of the AIRSAR DSM;' 

.5 meter,  for  comparison with the 5 meter  posting DSM (even though  the  resolution is 

10 meters); 

3 nl. for the LIDAR resolution. P 

An interesting  problem  to  be  evaluated is whether  it is possible to use the  same  building 

extraction  procedure for both SAR and LIDAR datasets,  and how its  parameters  must  be 

changed a,ccordingly. Moreover, we would like to  understand from  these  esperiments what. 

it is possible to estract  from  these two different  sets of measurements in terms of object. 

'Currently. 80 h lHz ,  X-band  data is commercially  available a t  2.5,  5 ,  and 10 meter  postings  from  Intermap.  Inc. 

We int,end to use the 80 M h z  d a t a  for the  Denver  area  (when  they will be  available)  to  examine  and  compare  the 

performance of our building  extraction  algorithm. 
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characteristics  (essentially,  building  footprint,  height  and  shape). 

A .  Building extraction from IFSAR data 

The interferometric SAR image used in this research covers a  portion of the  metropolitan 

area of Los AngeIes (exactly, a part of Wilshire  Boulevard, S. Monica).  The  images we 

show here come  from a larger data series recorded  on  August 5 ,  1994, from the height 

of 11,000 meters.  The flight path was from 33.97 N latitude, -118.47 longitude to 33.97 

N latitude, -118.41 longitude.  Ground truth was provided by using  available 3D CAD 

models,  or  by a field recognition of the buildings, and  the  measurement,  as  accurate as 

possible, of their  footprints  and heights. 

Fig. 1 presents the original data, while fig. 2 shows the  same  da.ta  after  applying  the algo- 

rithm  outlined  in  section 111, with the most  relevant structures  individuated  and  extracted. 

The  importance of this  result is twofold. First,  each of the buildings is reconstructed  and 

t'he noise or  shadowingllayover effect has been partially  discarded.  Second,  each  extracted 

structure is complet,ely  isolated  from the  others, providing an "intelligent" segmentation 

of the original DSlL. 

In  [5]  and [a?] we applied  a  similar  procedure to  the  same  data  set, finding that  the 

building  height  accuracy is almost  within the precision of the AIRSAR sensor ( f 2 . 5  m). 

So, we may say that  the inaccuracies  introduced by the grouping  algorithm  are negligible. 

However, in that  paper  it was found that the  algorithm led to (heavy)  underestimates 

of the building  footprints.  The  underestimate was due principally to  the fact  that we 

considered  only the flat  top of each building as a representative of its  footprint. In this 

improved version of the  algorithm no flat top is provided,  because we try  to  reconstruct 

as faithfully as possible the  shape of the buildings. For sake of comparison, we assumed ' 

as footprint of each extracted  object  the  area  that  it occupies at  the mean roof  level ( the 

mean level of the roofs of the  small residential  buildings all around  it).  Correspondingly, 

we considered as the height of a  building the mean value of the highest plane  inside  its 

footprint  (we used the mean  and not the  maximum value to discard  possible outliers). 

Considering  these  definitions,  the  current version of the building extraction  algorithm 

provides  result,s comparable  to  those in [5 ]  and [22] with respect to  the heights extracted, 

while for the  footprints  it gives more  reliable values, as  it can be seen in Table I, that 
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compares the  percentage  area  errors of the  target buildings in the  area.  Negative values 

correspond to  underestimates  (mainly  due  to shadowing  effect),  positive  ones to overesti- 

mates  (for  buildings  with  large layover effects). A look at  the  table reveals that  the new 

method  usually  overestimates  the  building  section,  but the mean  square value of the  area 

error  has  decreased, if we consider the  same  test  set. For the 5 buildings  considered  in 

both  papers  this  value is  now 18% instead of 20%. 

Finally, in the  same  table  further  results  are  presented,  obtained when we used jointly  the 

3D IFSAR data  and  the SAR measurements  correlation  map, i. e. an image  representing 

in each  point  the  correlation  among  the SAR measurements in that point and a region 

around  it [ X ] .  The  idea is that false  heights  due  to  shadowing/layover effects should  have 

lower correlation than  actual  measurements.  Indeed, low correlation  corresponds to a 

larger  interferometric  phase noise, which in turn reduces the accuracy of the IFSAR DSM. 

Therefore, by discarding low correlation pixels we may have  a more precise 3D image of 

any  area. We found that, by considering  only 3D data  extracted  from  measurements with 

correlation  value  higher than 0.5, we obtained  better  results  (those in the  last  column of 

Table I) ,  where  the  mean  square  area  error is  now even less. However, the  area  where  no 

data is available  has  been  dramatically  increased  and  Barrington Plaza Apt. I now splits 

into two distinct  objects. 

B. Building extraction  from LIDAR data 

The LIDAR data considered  in this  subsection refer to downtown  Denver, and precisely 

to  the  area  around  the  Colorado  Capitol  and covering the  park in front of it  and  some of 

the buildings around.  The  original  data  at 5 and 10 m  resolution  respectively are  depicted 

in fig. 1 and 5 ,  while an  aerial  image of the  same  area  at higher resolut,ion (nearly 1 m) 

is shown in fig. :3. h'lany buildings  with different shapes can be  easily recognized from the 

DSM. even at  the coarse  resolution. 

L: 

However. a closer look reveals that  the re-mapped  image grid does  not  provide t'he same 

vertical  resolution  granted  for each measurement,  and therefore. even if extremely  detailed. 

the DSM is also noisy. This is evident, for instance, by looking at fig. 6, where the Colorado 

State  Capitol  at  three different resolution (10, 5 and 3 m) is shown.  It is clear that  the 

task t,o extract a meaningful  structure model is more  complex than at a first  glance. 
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Fig. -1 arid :J provide the best  results that we were able  to  obtain  with  the  building 

extraction  a.lgorithm on the 5 and 10 m data  sets. In the  resulting DSMs only the  points 

that were aggregated  into planes are  drawn,  to show that  the analysis  provides a joint 

de-noising  and  segmentation of the original data. Many of the missing points  are however 

aggregated  into  segments,  that  are  too different in orientation  to  be  joined  to  neighboring 

planes.  This is mainly an effect of the imprecision of the original data, as it can  be seen 

in fig. 7, where  three successive lines of the 5 m  Capitol  data  (center  image in fig.6) are 

depicted.  It is clear that the building profile change very much from  one  line  to  the  other, 

and it is difficult to find  reliable  relationships  among the  linear  approximations. 

It  should  be  noted that for this  data  set  no  measurement  point was discarded at the 

input, of the  segmentation  procedure,  because LIDAR data  are  not affected by shadowing 

and/or 1a.yover effects. Instead, much  more attention  had  to  be  paid  to  the choice of the 

line  segmentation  parameters, to  make the detection  algorithm  robust  with  respect to  the 

local  noise ripple . Table I1 summarizes the best  results achieved for the Colorado State 

Capitol by giving the  area  percentage  error at  the  three different  analyzed  resolutions 

using very similar  sets of input  parameters,  together with the  output 3D profiIe (to be 

compared  with fig. 6). Note  that  the choice of suitable  input values for the  parameters 

will be discussed  in detailed in the next session. 

V. DISCUSSION OF THE RESULTS 

The results of the preceding  section were obtained by a suitable choice of the  thresholds 

and  parameters involved in the segmentation  procedure.  Moreover,  more  information 

t11a.n the 3D reconstructed  urban profile was used, when available from  the  original  sensor. 

However, these choices must  be  discussed,  and  the  utility of these  additional  data is also 

to  be  considered. 

In particular,  as  already  observed, SAR data over Los Angeles, suffer from  overlay/shadowing 

effects. They prevent the  algorithm from  finding the  actual 3D shapes if we do  not  intro- 

duce  some n priori information  about  the reliability of the  measurements  and  where  they 

can (or must)  be  discarded. To this  aim,  the correlation map was added  to  the  original 

DSM, to provide a manner  to  quantify  this reliability. The  threshold  on  the  correlation 

value was chosen exactly in the middle of its  range of values; we should add that a slight 
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chmge o f  this  threshold  toward raising values produces mixed results.  Indeed.  on  one  hand 

many  other  uncertain pixels are  discarded;  on  the  other  hand, also meaningful  information 

begins to be lost.  Therefore,  from  these  results we observed that  the  intuitive choice of 0.5 

can  be  considered  also the  best one. The  parameters for the building extraction  procedure 

were chosen according to [ 5 ] ,  i. e.  overpartitioning  the  scan lines and allowing the segment 

length  to  be  as  small as two pixels (10 m). 

Since  information  similar to  the correlation map were not available  for the LIDAR data, 

we focused  only  on the choice of the  parameter values to segment the  original  image in 

the best  possible way. We maintain fixed to  the  minimum  reasonable value the  distance 

between the middle  point of each  segment and  the  actual  corresponding 3D point (say, 1 

m )  and  the segment length (2  pixels). We analyze  here how to choose the  step  threshold 

and  the  similarity  required  for segment  aggregation  (see  section 111). The  results were 

evalmted by means of five p-arameters:  percentage error on area  with  respect to  the 

original data,  mean  height  error  and  corresponding  standard  deviation,  mean  height  error 

and  corresponding  standard  deviation  after  discarding the points that  are  still  isolated at 

the  end of the procedure. 

Fig. S(a) depicts the behavior of these  quality  measures  with  respect to  the  step  threshold 

value  with  similarity  value fixed to 0.6: it is clear that higher step values produce worse 

results,  but  the [2 + 51 range is almost  equally  valuable, and  this is strictly  connected  to 

the local fluctuation of 3D points  around  their  actual  value  (see for instance fig. 7). In 

fig. S(b): instead,  taking  the  step  threshold fixed to 3 m,  the similarity  requirements were 

changed.  The first,, truly  interesting, result is that lower values give better  outcomes,  up 

to no area  error.  This is due  to  the  strong  requirements in segment definition ( i .  e. the 1 

m  segment  division threshold  and the 2 pixel minimum  length) so that segments are only 

nmm,irtnlly poorly  similar. In other words, even if you join two adjacent  segments 2 pixels 

long i n  a  single  plane, it is almost  immaterial which is their original slope  and  intersect: 

the plane is so small that no large  error may result! 

B 

A further  advantage of this choice is that  the  final  structure is obtained by means of a 

large  number of segment-plane  associations  and a small  number of final point  aggregations 

(and so. shorter  cpu-times).  The  disadvantage is that  there  are  many planes representing 
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the  same  structure.  and if' we want to merge them we may use the  same  threshold: allowing 

possibly  large  final errors,  or a tighter one,  with the  danger not to  aggregate  elements  at 

all (since  they  are  too different planes). 

As a final  comment to  the  algorithm  (in  both analysis situations), we should  note  that 

the idea to take as primitives  the  image  line  segments  introduce a privileged  direction in 

the  segmentation  procedure.  This choice has  no  influence  on the  results when the surfaces 

to be  retrieved  are  large  with  respect  to  the  starting  segment  primitives, as in the original 

application [23]. In our IFSAR and LIDAR images,  instead,  building  dimensions  can only 

be a few pixels wide, and  as a. result  this  direction  must  be  carefully  chosen.  Therefore, 

if the environment, to  be analyzed  (like in almost  any  urban  situation)  contains  randomly 

oriented  objects.  the  detection  and  reconstruction  accuracy may be a decreasing  function 

of the angle  between the  segmentation  and  the building  direction. 

VI. CONCLUSIONS 

This work shows that  it is possible to develop a common procedure for 3D building 

detection  and  extraction  from DSMs, even if originating  from different sources. We applied 

our  a.lgorithm  to IFSAR and LIDAR derived surface  data  to  examine  its  performances,  and 

evaluate  the  data  characteristics.  The  same  procedure was also used to  understand which 

are  the  potentiality  and  the  drawbacks of the two different data  sets,  namely IFSAR 

elevation  maps and LIDAR range  measurements. We specified a detailed  procedure  to 

choose the  parameters of the building extraction  method  starting  from  the knowledge of 

the horizontal  and  vertical resolutions of the original DSMs. 

Our  algorithm was successful in automatic  detection  and  extraction of relatively  large, 

isolated  structures for both  data  sets.  This is consistent  with the  available  data  postings ( 3  

met,er for LIDAR. and 5 meter for IFSAR). The mean  footprint of the we11 detected build- 

ings is around lS00 m 2 ,  but we had very good  results even for 11645 Wilshire  Boulevard 

(see  Table I ) ,  whose footprint is  less than 900 m2.  

P 

LIDAR data was characterized with higher  vertical  precision. This high precision is 

balanced  with  the  extended  time which is required for high resolution data  acquisition. 

.A reduction i n  acquisition  time is possible by using a scanning LIDAR system, which in 

turn will suffer from  shadowing effects. 
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IFS;I\R data acquisition is rapid,  but for urban  areas  it suffers from layover (for the  radar 

illuminated  side of the building)  and shadowing (this  corresponds  to  multiple  reflections, 

where  a  height  value is reported in the region where no data can be available due  to block- 

age of the  radar  signal by the  structure)  due  to  the presence of large  structures. Also, the 

multiple  scattering effects produces  artifacts which should  be  taken into  account. We used 

the  interferometric  correlation coefficient to eliminate the height  values which can  reduce 

the  performance of our  extraction  algorithm. We found that by using the correlation  value 

of 0.5, the height values around  dominant  structures which can be  corrupted by layover 

and  shadowing  are  masked  out for the purpose of automated  detection  and  extraction. 

However, even  with this  correction,  the 3D profiles and 2D footprints of the buildings 

suffer from  under- or overestimate. 

Future  developments could  be additional pre-processing algorithms  to  discard  as much as 

possible the  multiple  scattering effects on the  radar  backscattered  signal, before applying 

the  clustering  step. A possibility  could be  to  jointly  evaluate  coarse LIDAR acquisitions 

and  IFSAR elevation data. Finally, a more refined version of the  detection  algorithm, 

based on a direct  plane  fitting (avoiding the clustering  problems  highlighted above) is 

under  development. 

Moreover, the incidence  angle is surely a variable to consider  when  dealing with IFSAR 

derived  DSMs. Indeed,  the  detection  procedure  outlined in this  paper was designed to 

"correct" the shadowing/layover  shape  errors  and should be  independent  from  the quality 

of the DSM. Practically, however, we may have different results for the  same  test  set 

starting  from  different IFSAR.  measurements. So, one of the  research  directions we are 

exploring now  is to  characterize  urban DSMs derived from  near or far-range  radar  data. 
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Figure Caption 

l i  

Fig. 1: The Digital  Surface  Model (DSM) of a part of Wilshire  Boulevard,  Santa 

Monica derived  from AIRSAR interferometric  measurements. 

Fig. 2: Classification  results  for the  area in fig. 1 by means of the building  extraction 

algorithm  outlined in the  text:  note  the  regularization of the profile of the foreground 

buildings. 

Fig. 3:  An orthophoto of the  area of downtown Denver near  Colorado State  Capitol. 

Fig. 4: The building profiles reconstructed by the refined planar  approximation  pro- 

posed in this  paper (a) or by the  method in [22] (b) compared  with the original LIDAR 

DSM of  downtown  Denver? at 5 m resolution (c). 

Fig. 5 :  The original LIDAR DSM of downtown Denver at 10 m  resolution (a) and  the 

building profiles reconstructed by the refined planar  approximation  (b). 

Fig. 6: The resampled LIDAR DSM of the Colorado State  Capitol  building  at 10 m 

(a),  5 m (b )  and 3 m (c) resolution. 

Fig. i: Three height profiles from  adjacent lines of the 5 m Capitol  data. 

Fig. 8: Area  and height errors for the reconstructed  structure of the  Capitol  State 

building  starting  from  the LIDAR data  at 5 m resolution for different  choices of the 

input parameters of the  segmentation  procedure. y-axis units  are  percentages for the 

area  error  (red  bar), met,ers  for  all other  quantities: x-axis label  format  (see  text for " 

the  definitions) is min. step vaEue/max. middle point distance/min. segment length 

(rnin. similarity). 

Table I: Percentage area  error in determining  the building footprints  starting  from  the 

M-ilshire  Boulevard IFS.\R DSM. 

Table 11: Colorado State  Capitol 3D shape as reconstructed  from LIDAR data  at 3, 5 

and 10 m  resolution. 



TABLE I 

PERCENTAGE AREA ERROR IN DETERMINING THE BUILDING FOOTPRINTS STARTING FROM THE 

WILSHIRE BOULEVARD IFSAR DSM (N.   C .  = NOT  CONSIDERED). 

building 

Coastal  Federal  Bank 

World  Savings 

11755 Wilshire  Boulevard 

Barrington  Plaza  Apt. I 

11645  Wilshire  Boulevard 

Barrington Plaza Apt. I1 

Barrington  Plaza  Apt. 111 

West Wilshire  Center 

ground truth area (m') 

1500 

2800 

2475 

2400 

875 

675 

675 

1500 

in [ZZ] 

-20% 

-25% 

-37% 

-88% 

-9% 

n. c .  

n. c .  

n. c .  

this  paper 

+85% 

+6% 

+24% 

-8% 

+11% 

+8l% 

+74% 

+1% 

with  correlation m a p  
~ 

+77% 

+9% 

0% 

-58% 

+14% 

+66% 

+74% 

-13% 
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